Learning Face Representation from Scratch
نویسندگان
چکیده
Pushing by big data and deep convolutional neural network (CNN), the performance of face recognition is becoming comparable to human. Using private large scale training datasets, several groups achieve very high performance on LFW, i.e., 97% to 99%. While there are many open source implementations of CNN, none of large scale face dataset is publicly available. The current situation in the field of face recognition is that data is more important than algorithm. To solve this problem, this paper proposes a semi-automatical way to collect face images from Internet and builds a large scale dataset containing about 10,000 subjects and 500,000 images, called CASIAWebFace. Based on the database, we use a 11-layer CNN to learn discriminative representation and obtain state-of-theart accuracy on LFW and YTF. The publication of CASIAWebFace will attract more research groups entering this field and accelerate the development of face recognition in the wild.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملVOILA: An Optimised Dialogue System for Interactively Learning Visually-Grounded Word Meanings (Demonstration System)
We present VOILA: an optimised, multimodal dialogue agent for interactive learning of visually grounded word meanings from a human user. VOILA is: (1) able to learn new visual categories interactively from users from scratch; (2) trained on real human-human dialogues in the same domain, and so is able to conduct natural spontaneous dialogue; (3) optimised to find the most effective trade-off be...
متن کاملTwitter Sentiment Analysis (almost) from Scratch
A popular application in Natural Language Processing (NLP) is the Sentiment Analysis, i.e., the task of extracting contextual polarity from a given text. The social network Twitter provides an immense amount of text (called tweets) generated by users with a maximum number of 140 characters. In this paper, we propose to learn a tweet representation from publicly provided data from tweets in orde...
متن کاملRepresentation Learning by Rotating Your Faces
The large pose discrepancy between two face images is one of the fundamental challenges in automatic face recognition. Conventional approaches to pose-invariant face recognition either perform face frontalization on, or learn a pose-invariant representation from, a non-frontal face image. We argue that it is more desirable to perform both tasks jointly to allow them to leverage each other. To t...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1411.7923 شماره
صفحات -
تاریخ انتشار 2014